
ChainerMN Documentation
Release 1.2.0

Takuya Akiba

Feb 06, 2018

Contents

1 Installation 3
1.1 Installation Guide . 3
1.2 Step-by-Step Troubleshooting . 5

2 Tutorial 13
2.1 Overview . 13
2.2 Step 1: Communicators and Optimizers . 14
2.3 Step 2: Datasets and Evaluators . 16
2.4 Tips and FAQs . 17

3 API Reference 19
3.1 Communicators . 19
3.2 Optimizers and Evaluators . 20
3.3 Dataset Utilities . 20
3.4 Links . 21
3.5 Functions . 24
3.6 Trainer extensions . 27

Python Module Index 29

i

ii

ChainerMN Documentation, Release 1.2.0

Contents:

Contents 1

ChainerMN Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Installation

1.1 Installation Guide

1.1.1 Requirements

In addition to Chainer, ChainerMN depends on the following software libraries: CUDA-Aware MPI, NVIDIA NCCL,
and a few Python packages including CuPy and MPI4py.

Chainer

ChainerMN adds distributed training features to Chainer; thus it naturally requires Chainer. Please refer to the official
instructions to install.

CUDA-Aware MPI

ChainerMN relies on MPI. In particular, for efficient communication between GPUs, it uses CUDA-aware MPI. For
details about CUDA-aware MPI, see this introduction article. (If you use only the CPU mode, MPI does not need to
be CUDA-Aware. See Non-GPU environments for more details.)

The CUDA-aware features depend on several MPI packages, which need to be configured and built properly. The
following are examples of Open MPI and MVAPICH.

Open MPI (for details, see the official instructions):

$./configure --with-cuda
$ make -j4
$ sudo make install

MVAPICH (for details, see the official instructions):

3

http://docs.chainer.org/en/latest/install.html
http://docs.chainer.org/en/latest/install.html
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
https://www.open-mpi.org/faq/?category=building#build-cuda
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html#x1-120004.5

ChainerMN Documentation, Release 1.2.0

$./configure --enable-cuda
$ make -j4
$ sudo make install
$ export MV2_USE_CUDA=1 # Should be set all the time when using ChainerMN

NCCL

To enable efficient intra- and inter-node GPU-to-GPU communication, we use NVIDIA Collective Communications
Library (NCCL). See the official instructions for installation.

ChainerMN requires NCCL even if you have only one GPU per node. The only exception is when you run ChainerMN
on CPU-only environments. See Non-GPU environments for more details.

Note: We reccomend NCCL 2 but NCCL 1 can be used. When you use CUDA 7.0 and 7.5, please install NCCL 1
because NCCL 2 is not supported with CUDA 7.0 and 7.5. However, for NCCL 1, PureNcclCommunicator is
not supported in ChainerMN. If you use NCCL 1, please properly configure environment variables to expose NCCL
both when you install and use ChainerMN. Typical configurations should look like the following:

export NCCL_ROOT=<path to NCCL directory>
export CPATH=$NCCL_ROOT/include:$CPATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib/:$LD_LIBRARY_PATH
export LIBRARY_PATH=$NCCL_ROOT/lib/:$LIBRARY_PATH

If you change the version of NCCL installed, you have to reinstall CuPy. Because, current ChainerMN applies CuPy
to use NCCL. See the official instructions for reinstalltion.

MPI4py

ChainerMN depends on a few Python packages, which are automatically installed when you install ChainerMN.

However, among them, we need to be a little careful about MPI4py. It links to MPI at installation time, so please be
sure to properly configure environment variables so that MPI is available at installation time. In particular, if you have
multiple MPI implementations in your environment, please expose the implementation that you want to use both when
you install and use ChainerMN.

CuPy

Chainer and ChainerMN rely on CuPy to use GPUs. Please refer to the official instructions to install. CuPy requires
NCCL to be enabled. See Check if NCCL is enabled in CuPy, if you want to check whether NCCL is enabled in CuPy.

Chainer and ChainerMN can be installed without CuPy, in which case the corresponding features are not available.
See Non-GPU environments for more details.

Tested Environments

We tested ChainerMN on all the following environments.

• OS

– Ubuntu 14.04 LTS 64bit

• Python 2.7.13 3.5.1 3.6.1

4 Chapter 1. Installation

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
http://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/index.html#downloadnccl
https://docs-cupy.chainer.org/en/stable/install.html#id13
https://docs-cupy.chainer.org/en/stable/install.html

ChainerMN Documentation, Release 1.2.0

• Chainer 3.3.0

• CuPy 2.3.0

• MPI

– openmpi 1.6.5 1.10.3 2.1.1

– mvapich 2.2

• MPI4py 2.0.0

• NCCL 1.3.4 2.0.4

1.1.2 Installation

Install via pip

We recommend to install ChainerMN via pip:

$ pip install chainermn

NOTE: If you need sudo to use pip, you should be careful about environment variables. The sudo command DOES
NOT inherit the environment, and thus you need to specify the variables explicitly.

$ sudo CPATH=${CPATH} LIBRARY_PATH=${LIBRARY_PATH} pip install chainermn

Install from Source

You can use setup.py to install ChainerMN from source:

$ tar zxf chainermn-x.y.z.tar.gz
$ cd chainermn-x.y.z
$ python setup.py install

Non-GPU environments

Users who want to try ChainerMN in CPU-only environment may skip installation of CuPy. Non-GPU set up may
not be performant as GPU-enabled set up, but would would be useful for testing or debugging training program in
non-GPU environment such as laptops or CI jobs.

In this case, the MPI does not have to be CUDA-aware. Only naive communicator works with the CPU mode.

Note: Current version of ChainerMN does not need --no-nccl flag for CPU-only environment at installation any
more. It would be just ignored.

1.2 Step-by-Step Troubleshooting

This section is a step-by-step troubleshooting guide for ChainerMN. Please follow these steps to identify and fix your
problem.

We assume that you are using Linux or another Unix-like environment.

1.2. Step-by-Step Troubleshooting 5

ChainerMN Documentation, Release 1.2.0

1.2.1 Single-node environment

Basic MPI installation

Although ChainerMN stands for “Chainer MultiNode,” it is good to start from single-node execution. First of all, you
need MPI. If MPI is correctly installed, you will see the mpicc and mpiexec commands in your PATH.

Below is an example of the output from Mvapich on Linux.:

$ which mpicc
/usr/local/bin/mpicc

$ mpicc -show
gcc -I/usr/local/include ...(snip)... -lmpi

$ which mpiexec
/usr/local/bin/mpiexec

$ mpiexec --version
HYDRA build details:
Version: 3.1.4
Release Date: Wed Sep 7 14:33:43 EDT 2016
CC: gcc
CXX: g++
F77:
F90:
Configure options: (snip)
Process Manager: pmi
Launchers available: ssh rsh fork slurm ll lsf sge manual persist
Topology libraries available: hwloc
Resource management kernels available: user slurm ll lsf sge pbs cobalt
Checkpointing libraries available:
Demux engines available: poll select

If you see any error in above commands, please go back to the CUDA-Aware MPI and check your MPI installation.

Check what MPI you are using

In CUDA-Aware MPI, we mention both of Open MPI and Mvapich. If the MPI is provided by the system administrator
and you are not really sure which MPI you are using, check the output of mpiexec –version.

• If the output contains HYDRA, then it’s MVAPICH (or possibly MPICH).

• If the output contains OpenRTE, then it’s Open MPI.

However, in such a case, you should make sure that the MPI is CUDA-aware, as mentioned below. We recommend to
build your own MPI.

Check if MPI is CUDA-aware

Your MPI must be configured as CUDA-aware. You can use the following C program to check it.

/* check_cuda_aware.c */
#include <assert.h>
#include <stdio.h>
#include <mpi.h>
#include <cuda_runtime.h>

6 Chapter 1. Installation

ChainerMN Documentation, Release 1.2.0

#define CUDA_CALL(expr) do { \
cudaError_t err; \
err = expr; \
assert(err == cudaSuccess); \

} while(0)

int main(int argc, char **argv) {
int rank, size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int *sendbuf_d = NULL;
int *recvbuf_d = NULL;

CUDA_CALL(cudaMalloc((void**)&sendbuf_d, sizeof(int)));
CUDA_CALL(cudaMalloc((void**)&recvbuf_d, sizeof(int)));
CUDA_CALL(cudaMemcpy(sendbuf_d, &rank, sizeof(int), cudaMemcpyDefault));

MPI_Reduce(sendbuf_d, recvbuf_d, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0) {
int sum = -1;
CUDA_CALL(cudaMemcpy(&sum, recvbuf_d, sizeof(int), cudaMemcpyDefault));
if (sum == (size-1) * size / 2) {
printf("OK.\n");

} else {
printf("Error.\n");

}
}

cudaFree(sendbuf_d);
cudaFree(recvbuf_d);

MPI_Finalize();
}

Save the code to a file named check_cuda_aware.c. You can compile and run it with the following command.:

$ export MPICH_CC=nvcc # if you use Mvapich
$ export OMPI_CC=nvcc # if you use Open MPI
$ $(mpicc -show check_cuda_aware.c -arch sm_53 | sed -e 's/-Wl,/-Xlinker /g' | sed -e
→˓'s/-pthread/-Xcompiler -pthread/')
$./a.out
OK.

If the proglam prints OK., your MPI is correctly configured.

Check mpi4py

Next, let’s check that mpi4py is correctly installed. You can use the following script to check it:

coding: utf-8
import os
from mpi4py import MPI

1.2. Step-by-Step Troubleshooting 7

ChainerMN Documentation, Release 1.2.0

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
if i == rank:
print("{} {}".format(os.uname()[1], i))

comm.Barrier()

Save the script into a file named check_mpi4py.py and run it. The output from the script should look like this.:

$ mpiexec -np 4 python check_mpi4py.py
host00 0
host00 1
host00 2
host00 3

The script prints hostnames and ranks (process id in MPI) from each MPI process in a sequential manner. host00 is
the host name of the machine your are running the process. If you get an output like below, it indicates something is
wrong with your installation.:

Wrong output !
$ mpiexec -n 4 python check_mpi4py.py
host00 0
host00 0
host00 0
host00 0

A common problem is that the mpicc used to build mpi4py and mpiexec used to run the script are from different
MPI installations.

Finally, run nosetests to check the single-node configuration is ready.:

$ nosetests
......S.S...S.S...S.S...S.S.........SS
--
Ran 38 tests in 63.083s

OK (SKIP=10)

Check if NCCL is enabled in CuPy

CuPy requires NCCL to be enabled. You can check it with the following command.:

$ python -c 'from cupy.cuda import nccl'

If you get an output like below, NCCL is not enabled in CuPy. Please check the installation guide of CuPy.:

Traceback (most recent call last):

File "<string>", line 1, in <module>

ImportError: cannot import name 'nccl'

8 Chapter 1. Installation

ChainerMN Documentation, Release 1.2.0

1.2.2 Multi-node environment

Check SSH connection and environment variables

To use ChainerMN on multiple hosts, you need to connect to computing hosts, including the one you are currently
logged into, via ssh without password authentication (and preferably without username).:

$ ssh host00 'hostname'
host00 # without hitting the password

$ ssh host01 'hostname'
host01 # without hitting the password

...

You may get a message like this:

The authenticity of host 'host01 (xxx.xxx.xxx.xxx)' can't be established.
ECDSA key fingerprint is SHA256:haGUMcCeC5A8lGh1lpjpwL5dF4xCglZArhhxxxxxxxxx.
Are you sure you want to continue connecting (yes/no)?

This message appears when you log in a host for the first time. Just type yes and the message won’t appear again. You
need to repeat this process on all computing hosts.

Also, you need to pay attention to the environment variables on remote hosts. The MPI runtime connects to the remote
hosts in non-interactive mode, and environment variables may differ from your interactive login sessions.:

$ ssh host00 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.

$ ssh host01 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.

...

In particular, check the following variables, which are critical to executing MPI programs:

• PATH

• LD_LIBRARY_PATH

• MV2_USE_CUDA (if you use MVAPICH)

• MV2_SMP_USE_CMA (if you use MVAPICH)

Besides, you need to make sure the same mpiexec binary is used to run MPI programs.:

$ ssh host00 'which mpiexec'
/usr/local/bin/mpiexec

$ ssh host01 'which mpiexec'
/usr/local/bin/mpiexec

All the commands should give the same mpiexec binary path.

Program files and data

When you run MPI programs, all hosts must have the same Python binary and script files in the same path. First, check
that the python binary and version are identical among hosts. Be careful if you are using pyenv or Anaconda.:

1.2. Step-by-Step Troubleshooting 9

ChainerMN Documentation, Release 1.2.0

$ ssh host00 'which python; python --version'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

$ ssh host01 'which python'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

...

Also, the script file (and possibly data files) must be in the same path on each host.

$ ls yourscript.py # in the current directory
yourscript.py

$ ssh host00 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

$ ssh host01 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

...

If you are using NFS, everything should be okay. If not, you need to transfer all the necessary files manually.

In particular, when you run the ImageNet example in ChainerMN repository, all data files must be available on all
computing hosts.

hostfile

The next step is to create a hostfile. A hostfile is a list of hosts on which MPI processes run.:

$ vi hostfile
$ cat hostfile
host00
host01
host02
host03

Then, you can run your MPI program using the hostfile. To check if the MPI processes run over multiple hosts, save
the following script to a file and run it via mpiexec:

print_rank.py
import os

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
if i == rank:
print("{} {}".format(os.uname()[1], i))

comm.Barrier()

If you get an output like below, it is working correctly.:

10 Chapter 1. Installation

ChainerMN Documentation, Release 1.2.0

$ mpiexec -n 4 --hostfile hostfile python print_rank.py
host00 0
host01 1
host02 2
host03 3

If you have multiple GPUs, you may want to run multiple processes on each host. You can modify hostfile and specify
the number of processes to run on each host.:

If you are using Mvapich:
$ cat hostfile
host00:4
host01:4
host02:4
host03:4

If you are using Open MPI
$ cat hostfile
host00 cpu=4
host01 cpu=4
host02 cpu=4
host03 cpu=4

With this hostfile, try running mpiexec again.:

$ mpiexec -n 8 --hostfile hostfile python print_rank.py
host00 0
host00 1
host00 2
host00 3
host01 4
host01 5
host01 6
host01 7

You will find that the first 4 processes run on host00 and the latter 4 on host01.

You can also specify computing hosts and resource mapping/binding using command line options of mpiexec. Please
refer to the MPI manual for the more advanced use of mpiexec command.

If you get runtime error:

If you get the following error messages, please check the specified section of the troubleshooting or installation guide.

[hostxxx:mpi_rank_0][MPIDI_CH3I_SMP_init] CMA is not available. Set MV2_SMP_USE_CMA=0
→˓to disable CMA.
[cli_0]: aborting job:
Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
MPIR_Init_thread(514)....:
MPID_Init(365)...........: channel initialization failed
MPIDI_CH3_Init(404)......:
MPIDI_CH3I_SMP_Init(2132): process_vm_readv: Operation not permitted

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

1.2. Step-by-Step Troubleshooting 11

ChainerMN Documentation, Release 1.2.0

= PID 20327 RUNNING AT hostxxx
= EXIT CODE: 1
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===

-> Check the value of MV2_SMP_USE_CMA (see CUDA-Aware MPI and Check SSH connection and environment
variables).

[hostxx:mpi_rank_0][error_sighandler] Caught error: Segmentation fault (signal 11)

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20643 RUNNING AT hostxx
= EXIT CODE: 11
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===
YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)
This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions

-> Check the value of MV2_USE_CUDA (see CUDA-Aware MPI and Check SSH connection and environment vari-
ables)

12 Chapter 1. Installation

CHAPTER 2

Tutorial

2.1 Overview

2.1.1 Data Parallelism

ChainerMN employs the data parallel approach for distributed training. In the data parallel approach, each worker has
a model copy, and computes a gradient against a batch. Then, the workers collaborate to update the model using the
gradients of all workers.

13

ChainerMN Documentation, Release 1.2.0

2.1.2 Training Iterations

What ChainerMN does for distributed training is actually quite simple. Let us look at what we do in each iteration.
The following figure illustrates an iteration of standard training using Chainer (without ChainerMN). It consists of
three steps: forward, backward and optimize.

When using ChainerMN, an additional step all-reduce is inserted after the backward step. In this step, workers commu-
nicate to obtain the averaged gradient over gradients of all workers. Then, the aggregated gradient is used to improve
the model in the optimization step.

2.1.3 MPI

ChainerMN is built on MPI. MPI invokes our training script in the SPMD (single program, multiple data) way.
ChainerMN is designed to create a process on each GPU. For example, let us suppose you have two nodes with
four GPUs each, and want to run train_imagenet.py. Then, you will invoke eight Python processes running
train_imagenet.py by using mpiexec or mpirun.

2.2 Step 1: Communicators and Optimizers

In the following, we explain how to modify your code using Chainer to enable distributed training with ChainerMN.
We take Chainer’s MNIST example and modify it in a step-by-step manner to see the standard way of using Chain-
erMN.

2.2.1 Creating a Communicator

We first need to create a communicator. A communicator is in charge of communication between workers. A commu-
nicator can be created as follows:

comm = chainermn.create_communicator()

Workers in a node have to use different GPUs. For this purpose, intra_rank property of communicators is useful.
Each worker in a node is assigned a unique intra_rank starting from zero. Therefore, it is often convenient to use
the intra_rank-th GPU.

14 Chapter 2. Tutorial

https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py

ChainerMN Documentation, Release 1.2.0

The following line of code is found in the original MNIST example:

chainer.cuda.get_device(args.gpu).use()

which we modify as follows:

device = comm.intra_rank
chainer.cuda.get_device(device).use()

2.2.2 Creating a Multi-Node Optimizer

This is the most important step. We need to insert the communication right after backprop and right before optimiza-
tion. In ChainerMN, it is done by creating a multi-node optimizer.

Method create_multi_node_optimizer receives a standard Chainer optimizer, and it returns a new optimizer.
The returned optimizer is called multi-node optimizer. It behaves exactly same as the supplied original standard
optimizer (e.g., you can add hooks such as WeightDecay), except that it communicates model parameters and
gradients properly in a multi-node setting.

The following is the code line found in the original MNIST example:

optimizer = chainer.optimizers.Adam()

To obtain a multi-node optimizer, we modify that part as follows:

optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), comm)

2.2.3 Run

With the above two changes, your script is ready for distributed training. Invoke your script with mpiexec or mpirun
(see your MPI’s manual for details). The following is an example of executing the training with four processes at
localhost:

$ mpiexec -n 4 python train_mnist.py

In the non-GPU mode, you may see a warning like shown below, but this message is harmless, and you can ignore it
for now

Warning: using naive communicator because only naive supports CPU-only execution

If you have multiple GPUs on the localhost, 4 for example, you may also want to try:

$ mpiexec -n 4 python train_mnist.py --gpu

2.2.4 Multi-node execution

If you can successfully run the multi-process version of the MNIST example, you are almost ready for multi-node
execution. The simplest way is to specify the --host argument to the mpiexec command. Let’s suppose you have
two GPU-equipped computing nodes: host00 and host01, each of which has 4 GPUs, and so you have 8 GPUs in
total:

2.2. Step 1: Communicators and Optimizers 15

ChainerMN Documentation, Release 1.2.0

$ mpiexec -n 8 -host host00,host01 python train_mnist.py

The script should print similar results to the previous intra-node execution.

2.2.5 Copying datasets

In the MNIST example, the rank 0 process reads the entire portion of the dataset and scatters it to other processes. In
some applications, such as the ImageNet ChainerMN example, however, only the pathes to each data file are scattered
and each process reads the actual data files. In such cases, all datasets must be readable on all computing nodes in the
same location. You don’t need to worry about this if you use NFS (Network File System) or any other similar data
synchronizing system. Otherwise, you need to manually copy data files between nodes using scp or rsync.

2.2.6 If you have trouble

If you have any trouble running the sample programs in your environment, go to the Step-by-Step Troubleshooting
page and follow the steps to check your environment and configuration.

2.2.7 Next Steps

With only the above two changes distributed training is already performed. Thus, the model parameters are updated
by using gradients that are aggregated over all the workers. However, this MNIST example still has a few areas in
need of improvment. In the next page, we will see how to address the following problems:

• Training period is wrong; ‘one epoch’ is not one epoch.

• Evaluation is not parallelized.

• Status outputs to stdout are repeated and annoying.

2.3 Step 2: Datasets and Evaluators

Following from the previous step, we continue to explain general steps to modify your code for ChainerMN through
the MNIST example. All of the steps below are optional, although useful for many cases.

2.3.1 Scattering Datasets

If you want to keep the definition of ‘one epoch’ correct, we need to scatter the dataset to all workers.

For this purpose, ChainerMN provides a method scatter_dataset. It scatters the dataset of worker 0 (i.e., the
worker whose comm.rank is 0) to all workers. The given dataset of other workers are ignored. The dataset is split
into sub datasets of almost equal sizes and scattered to the workers. To create a sub dataset, chainer.datasets.
SubDataset is used.

The following line of code from the original MNIST example loads the dataset:

train, test = chainer.datasets.get_mnist()

We modify it as follows. Only worker 0 loads the dataset, and then it is scattered to all the workers:

16 Chapter 2. Tutorial

ChainerMN Documentation, Release 1.2.0

if comm.rank == 0:
train, test = chainer.datasets.get_mnist()

else:
train, test = None, None

train = chainermn.scatter_dataset(train, comm)
test = chainermn.scatter_dataset(test, comm)

2.3.2 Creating A Multi-Node Evaluator

This step is also an optional step, but useful when validation is taking a considerable amount of time. In this case, you
can also parallelize the validation by using multi-node evaluators.

Similarly to multi-node optimizers, you can create a multi-node evaluator from a standard evaluator by using method
create_multi_node_evaluator. It behaves exactly the same as the given original evaluator except that it
reports the average of results over all workers.

The following line from the original MNIST example adds an evaluator extension to the trainer::
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))

To create and use a multi-node evaluator, we modify that part as follows:

evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)

2.3.3 Suppressing Unnecessary Extensions

Some of extensions should be invoked only by one of the workers. For example, if the PrintReport extension is
invoked by all of the workers, many redundant lines will appear in your console. Therefore, it is convenient to register
these extensions only at workers of rank zero as follows:

if comm.rank == 0:
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.extend(extensions.ProgressBar())

2.4 Tips and FAQs

2.4.1 Using MultiprocessIterator

If you are using MultiprocessIterator and communication goes through InfiniBand, you would probably
face crashing problems. This is because MultiprocessIterator creates child processes by the fork sys-
tem call, which has incompatibilities with the design of MPI and InfiniBand. To cope with this issue, we can use
multiprocessing.set_start_method to change the way to start child processes:

multiprocessing.set_start_method('forkserver')

2.4. Tips and FAQs 17

https://www.open-mpi.org/faq/?category=tuning#fork-warning

ChainerMN Documentation, Release 1.2.0

Both forkserver mode and spawn mode should work. Please also refer to our ImageNet example, where
MultiprocessIterator is used. Unfortunately, multiprocessing.set_start_method is only avail-
able in Python 3.4+. Therefore you need those recent Python versions to use MultiprocessIterator.

2.4.2 Using Your Own Evaluator

Method create_multi_node_evaluator can also be used for customized evaluator classes that inherit from
chainer.training.extensions.Evaluator. Specifically, it wraps the evaluate method and returns the
averaged values over all workers. Please also refer to our ImageNet example, where a customized evaluator is used.

2.4.3 Using MPI4py Communicator

ChainerMN is based on MPI4py. For advanced users (e.g., those who want to parallelize preprocessing, create custom
extension, etc.), we encourage you to make use of MPI4py communicators. Let comm be a ChainerMN communicator,
then you can obtain MPI4py communicator by comm.mpi_comm. Please refer to MPI4py API reference.

2.4.4 Using FP16

FP16 (16-bit half precision floating point values) is not supported in ChainerMN as of now.

18 Chapter 2. Tutorial

http://pythonhosted.org/mpi4py/apiref/mpi4py.MPI.Comm-class.html

CHAPTER 3

API Reference

3.1 Communicators

chainermn.create_communicator(communicator_name=’hierarchical’, mpi_comm=None)
Create a ChainerMN communicator.

Different communicators provide different approaches of communication, so they have different performance
charasteristics. The default communicator hierarchical is expected to generally perform well on a va-
riety of environments, so one need not to change communicators in most cases. However, choosing proper
communicator may give better performance. The following communicators are available.

Name CPU GPU NCCL Recommended Use Cases
pure_nccl OK Required (>=

v2)
pure_nccl is recommended when NCCL2 is available in
the environment.

hierarchical OK Required Each node has a single NIC or HCA
two_dimensional OK Required Each node has multiple NICs or HCAs
single_node OK Required Single node with multiple GPUs
flat OK N/A
naive OK OK Testing on CPU mode

Parameters

• communicator_name – The name of communicator (naive, flat, hierarchical,
two_dimensional, pure_nccl, or single_node)

• mpi_comm – MPI4py communicator

Returns ChainerMN communicator

19

ChainerMN Documentation, Release 1.2.0

3.2 Optimizers and Evaluators

chainermn.create_multi_node_optimizer(actual_optimizer, communicator, dou-
ble_buffering=False)

Create a multi node optimizer from a Chainer optimizer.

Parameters

• actual_optimizer – Chainer optimizer (e.g., chainer.optimizers.Adam).

• communicator – ChainerMN communicator.

• double_buffering – If True, all-reduce and other processing (such as forward and
backward) are overlapped using double buffering. There are cases where accuracy is af-
fected because the gradients of the previous iteration are used for update. This flag is sup-
ported by PureNcclCommunicator only.

Returns The multi node optimizer based on actual_optimizer.

chainermn.create_multi_node_evaluator(actual_evaluator, communicator)
Create a multi node evaluator from a normal evaluator.

Actually this method patches the evaluator to work in multi node environment. This method adds several hidden
attributes starting with _mn_ prefix.

Parameters

• actual_evaluator – evaluator to be patched (e.g., chainer.training.
extensions.Evaluator)

• communicator – ChainerMN communicator

Returns The multi-node patched actual_evaluator.

Note: After patched, original evaluator does not work correctly in non-MPI environment.

3.3 Dataset Utilities

chainermn.scatter_dataset(dataset, comm, root=0, shuffle=False, seed=None,
max_buf_len=268435456)

Scatter the given dataset to the workers in the communicator.

The dataset of worker 0 (i.e., the worker whose comm.rank is 0) is scattered to all workers. The given dataset
of other workers are ignored. The dataset is split to sub datasets of almost equal sizes and scattered to workers.
To create a sub dataset, chainer.datasets.SubDataset is used.

Parameters

• dataset – A dataset (e.g., list, numpy.ndarray, chainer.datasets.
TupleDataset, . . .).

• comm – ChainerMN communicator or MPI4py communicator.

• shuffle (bool) – If True, the order of examples is shuffled before being scattered.

• root (int) – The root process of the scatter operation.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer being
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the

20 Chapter 3. API Reference

ChainerMN Documentation, Release 1.2.0

given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

• max_buf_len (int) – Max buffer size to be used at broadcasting binaries. Must not be
larger than 2147483647.

Returns Scattered dataset.

chainermn.datasets.create_empty_dataset(dataset)
Creates an empty dataset for models with no inputs and outputs.

This function generates an empty dataset, i.e., __getitem__() only returns None. Its dataset is compatible
with the original one. Such datasets used for models which do not take any inputs, neither return any outputs.
We expect models, e.g., whose forward() is starting with chainermn.functions.recv() and ending
with chainermn.functions.send().

Parameters dataset – Dataset to convert.

Returns Dataset consists of only patterns in the original one.

Return type TransformDataset

3.4 Links

class chainermn.MultiNodeChainList(comm)
Combining multiple non-connected components of computational graph.

This class combines each chainer.Chain, which represents one of the non-connected component in com-
puational graph. In __call__(), the returned object of chainer.Chain (which represents pointer) are
passed to the next chainer.Chain, in order to retain the computational graph connected and make backprop
work properly.

Users add each chainer.Chain by add_link() method. Each chain is invoked in forward computation
according to the order they are added, and in backward computation according to the reversed order.

Example (basic usage)

This is a simple example of the model which sends its outputs to rank=1 machine:

import chainer
import chainer.functions as F
import chainermn

class SimpleModelSub(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(SimpleModelSub, self).__init__(

l1=L.Linear(n_in, n_hidden),
l2=L.Linear(n_hidden, n_out))

def __call__(self, x):
h1 = F.relu(self.l1(x))
return self.l2(h1)

class SimpleModel(chainermn.MultiNodeChainList):

3.4. Links 21

ChainerMN Documentation, Release 1.2.0

def __init__(self, comm, n_in, n_hidden, n_out):
super(SimpleModel, self).__init__(comm)
self.add_link(

SimpleModelSub(n_in, n_hidden, n_out),
rank_in=None,
rank_out=1)

Example (split MLP on 2 processes)

This is the other example of two models interacting each other:

import chainer
import chainer.functions as F
import chainermn

class MLP(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(MLP, self).__init__(

l1=L.Linear(n_in, n_hidden),
l2=L.Linear(n_hidden, n_hidden),
l3=L.Linear(n_hidden, n_out))

def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

class Model0(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(Model0, self).__init__(comm)
self.add_link(

MLP(10000, 5000, 2000),
rank_in=None,
rank_out=1)

self.add_link(
MLP(100, 50, 10),
rank_in=1,
rank_out=None)

class Model1(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(Model1, self).__init__(comm)
self.add_link(MLP(2000, 500, 100), rank_in=0, rank_out=0)

Model0 is expected to be on rank=0, and Model1 is expected to be on rank=1. The first MLP in Model0
will send its outputs to Model1, then MLP in Model1 will receive it and send its outputs to the second MLP in
Model0.

22 Chapter 3. API Reference

ChainerMN Documentation, Release 1.2.0

Example (sending tuples)

This is the example for sending a tuple:

import chainer
import chainer.functions as F
import chainermn

class NN0(chainer.Chain):
def __call__(self, x):

y0 = some_calculation_nn0_0(x)
y1 = some_calculation_nn1_1(x)
return y0, y1

class NN1(chainer.Chain):
def __call__(self, y):

y0, y1 = y # unpack tuple from NN0
return some_calculation_nn1(y0, y1)

class Model_on_Process_0(chainermn.MultiNodeChainList):
def __init__(self, comm):

super(Model_on_Process_0, self).__init__(comm=comm)
self.add_link(NN0(), rank_in=None, rank_out=1)

class Model_on_Process_1(chainermn.MultiNodeChainList):
def __init__(self, comm):

super(Model_on_Process_1, self).__init__(comm=comm)
self.add_link(NN1(), rank_in=0, rank_out=None)

In this example, Model_on_Process_0 sends two elemental tuple (y0, y1) (returned by NN0.
__call__) to Model_on_Process_1, which can be unpacked as shown in NN1.__call__.

Parameters comm (chainermn.communicators._base.CommunicatorBase) – Chain-
erMN communicator.

add_link(link, rank_in=None, rank_out=None)
Register one connected link with its inout rank.

Parameters

• link (chainer.Link) – The link object to be registered.

• rank_in (int, list, or None) – Ranks from which it receives data. If None is
specified, the model does not receive from any machines.

• rank_out (int, list, or None) – Ranks to which it sends data. If None is spec-
ified, the model will not send to any machine.

class chainermn.links.MultiNodeBatchNormalization(size, comm, decay=0.9, eps=2e-05,
dtype=<type ’numpy.float32’>,
use_gamma=True, use_beta=True,
initial_gamma=None, ini-
tial_beta=None)

Batch normalization layer that can use the whole batch stats.

When using chainer.link.BatchNormalization, batch mean and std are computed independently for the local
batch in each worker. When local batch size is too small, training is unstable due to unreliable batch stats.

3.4. Links 23

ChainerMN Documentation, Release 1.2.0

In contrast, when using this MultiNodeBatchNormalization, workers communicate to conduct ‘correct’ batch
normalization (e.g., obtaining mean and std for the whole global batch).

This link works only with Chainer >= 2.0.0.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• comm (ChainerMN communicator) – communicator to share the batch stats.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

• use_gamma (bool) – If True, use scaling parameter. Otherwise, use unit(1) which makes
no effect.

• use_beta (bool) – If True, use shifting parameter. Otherwise, use unit(0) which makes
no effect.

3.5 Functions

chainermn.functions.send(x, communicator, rank, tag=0)
Send elements to target process.

This function returns a dummy variable only holding the computational graph. If backward() is invoked by
this dummy variable, it will try to receive gradients from the target process and send them back to the parent
nodes.

Parameters

• x (Variable) – Variable holding a matrix which you would like to send.

• communicator (chainer.communicators.CommunicatorBase) – Chain-
erMN communicator.

• rank (int) – Target process specifier.

• tag (int) – Optional message ID (MPI feature).

Returns A dummy variable with no actual data, only holding the computational graph. Please refer
chainermn.functions.pseudo_connect for detail.

Return type Variable

chainermn.functions.recv(communicator, rank, delegate_variable=None, tag=0, device=-1,
force_tuple=False)

Receive elements from target process.

This function returns data received from target process. If backward() is invoked, it will try to send gradients
to the target process.

Note: If you define non-connected computational graph on one process, you have to use
delegate_variable to specify the output of previous computational graph component. Otherwise
backward() does not work well. Please refer chainermn.functions.pseudo_connect for detail.

Parameters

24 Chapter 3. API Reference

ChainerMN Documentation, Release 1.2.0

• communicator (chainer.communicators.CommunicatorBase) – Chain-
erMN communicator.

• rank (int) – Target process specifier.

• delegate_variable (chainer.Variable) – Pointer to the other non-connected
component.

• tag (int) – Optional message ID (MPI feature).

• device (int) – Target device specifier.

• force_tuple (bool) – If False (the default) a Variable will be returned when the
number of outputs is one. Otherwise, this method returns a tuple even when the number of
outputs is one.

Returns Data received from target process. If backward() is invoked by this variable, it will send
gradients to the target process.

Return type Variable

chainermn.functions.pseudo_connect(delegate_variable, *actual_variables)
Connect independent connected graph component.

This function is implemented to return received arguments directly, except the first delegate_variable.
In backward computation, it returns received gradients directly, adding a zero grad corresponding to
delegate_variable. The detail of delegate_variable is described in the following notes.

Note: In model-parallel framework, models on each process might have many non-connected components.
Here we call a given graph non-connected when multiple inter-process communications are needed for its com-
putation. For example, consider the following example:

class ConnectedGraph(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(ConnectedGraph, self).__init__(comm)
self.add_link(ConnectedGraphSub(), rank_in=3, rank_out=1)

This model receives inputs from rank=3 process and sends its outputs to rank=1 process. The entire
graph can be seen as one connected component ConnectedGraphSub. Please refer the document of
MultiNodeChainList for detail.

On the other hand, see the next example:

class NonConnectedGraph(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(NonConnectedGraph, self).__init__(comm)
self.add_link(NonConnectedGraphSubA(), rank_in=3, rank_out=1)
self.add_link(NonConnectedGraphSubB(), rank_in=1, rank_out=2)

This model consists of two components: at first, NonConnectedGraphSubA receives inputs from rank=3
process and sends its outputs to rank=1 process, and then NonConnectedGraphSubB receives inputs from
rank=1 process and sends its outputs to rank=2 process. Here multiple inter-process communications are in-
voked between NonConnectedGraphSubA and NonConnectedGraphSubB, so it is regarded as non-
connected.

Such kind of non-connected models can be problematic in backward computation. Chainer traces back the
computational graph from the output variable, however naive implementation of chainermn.functions.
recv does not take any inputs rather receives inputs by MPI_Recv, where backward path vanishes.

3.5. Functions 25

ChainerMN Documentation, Release 1.2.0

To prevent this, dummy variables what we call delegate_variable are used. In principle, chainermn.
functions.send does not return any outputs because it sends data to the other process by MPI_Send.
However, chainermn.functions.send returns a dummy / empty variable in our implementation, which
is called delegate_variable. This variable does not hold any data, just used for retaining backward
computation path. We can guarantee the backward computation just by putting delegate_variable to
the next chainermn.functions.recv (chainermn.functions.recv has an optional argument to
receive delegate_variable).

Note: In some cases the intermediate graph component returns model outputs. See the next example:

class NonConnectedGraph2(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(NonConnectedGraph2, self).__init__(comm)
self.add_link(NonConnectedGraphSubA(), rank_in=1, rank_out=None)
self.add_link(NonConnectedGraphSubB(), rank_in=None, rank_out=1)

This model first receives inputs from rank=1 process and make model outputs (specified by rank_out=None)
in NonConnectedGraphSubA. Then using model inputs (specified by rank_in=None),
NonConnectedGraphSubB sends its outputs to rank=1 process. Since MultiNodeChainList.
__call__ returns outputs of the last component (in this case, outputs of NonConnectedGraphSubB),
naive implementation cannot output the returned value of NonConnectedGraphSubA as the model outputs.
In this case, pseudo_connect should be used.

pseudo_connect takes two arguments. The first one delegate_variable is what we explained in above
note. In this case, returned value of NonConnectedGraphSubB corresponds to delegate_variable.
The second one actual_variables is “what we want delegate_variable to imitate”. In
NonConnectedGraph2, we obtain returned value of NonConnectedGraphSubB as the model outputs,
but what we actually want is returned value of NonConnectedGraphSubA. At the same time we want to
trace back this resulted variable in backward computation. Using pseudo_connect, we can make a vari-
able whose data is the same as the returned value of NonConnectedGraphSubA, and which traces back
NonConnectedGraphSubB first.

pseudo_connect should also be used in some pathological cases, for example, where multiple
chainermn.functions.send occurs sequentially.

Parameters

• delegate_variable (chainer.Variable) – Pointer to the previous non-connected
graph component.

• actual_variables (tuple of chainer.Variable) – Actual values which
delegate_variable imitate.

Returns A variable with the given values combined with delegating variable.

Return type Variable

chainermn.functions.all_to_all(comm, xs, device=-1)
Differentiable all-to-all communication between workers.

This function invokes all-to-all communications among processes specified by the communicator. Backward
will be invoked as well as the ordinary chainer functions, just passing input gradients back. Unlike point-
to-point communication such as chainermn.functions.send and chainermn.functions.recv,
users need not to care about delegate variables, since backward() will not be invoked until all gradients from

26 Chapter 3. API Reference

ChainerMN Documentation, Release 1.2.0

output direction arrive. Please refer to chainermn.functions.pseudo_connect about the detail of
delegate variables.

Parameters

• comm – ChainerMN communicator.

• xs (list of chainer.Variables) – Variables to send.

• device (int) – Target device specifier.

Returns Received variables. d: A delegate variable.

Return type ys (list of chainer.Variables)

3.6 Trainer extensions

class chainermn.extensions.AllreducePersistent(model, comm)
Chainer extension to averagize persistents over workers.

When called, this extension invokes all-reduce communication among workers to compute averages of persistent
variables in the model. Persistent variables are updated to the averages. Currently, we ignore integer persistent
variables, and only float persistent variables are handled.

This extension is mainly to improve the running mean and variance of BatchNormalization by increasing the
effective number of examples. We do not need to call this frequently; call just before storing or evaluating the
model.

Parameters

• model (chainer.link.Link) – Target link object.

• comm (ChainerMN communicator) – communicator to compute averages.

chainermn.create_multi_node_checkpointer(name, comm, cp_interval=5, gc_interval=5,
path=None)

Create multi-node checkpointer object

Generational snapshot extension to allow fault tolerance; It keeps several old snapshots to rollback synchronized
snapshot at each MPI process. Snapshot files are identified as ‘<name>.<rank>.<iteration>’.

• <name> . . . identifier of the run where snapshot is kept for

• <rank> . . . which process owned the model

• <iteration> . . . number of iteration.

This extension keeps several files for each execution and allows users to resume the whole job at the latest
snapshots of each MPI process, and the iteration where all snapshots agrees.

As this object is a usual Chainer extension, users can just create this object and pass to the trainer as an extension:

checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
trainer.extend(checkpointer, trigger=(25, 'iteration'))

To run recovery at startup, before first iteration, run

checkpointer.maybe_load(trainer, optimizer)

before trainer.run() . If nothing is recovered (i.e. no snapshot found), trainer.updater.
iteration will remain 0 . Otherwise it will have the value of snapshot and the training will resume from
that iteration. optimizer is optional but this will let multi node optimizer avoid initial broadcast when all
snapshot data among nodes are all in sync.

3.6. Trainer extensions 27

ChainerMN Documentation, Release 1.2.0

After training finished without errors all those temporary checkpoints will be cleaned up at all nodes.

Another example to use checkpointer without trainer would be:

checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
checkpointer.maybe_load(obj_you_want_to_snap, optimizer)

while True: ## Training loop
...
updater.update()
...
checkpointer.save(obj_you_want_to_snap) # Make a checkpoint

Parameters

• name (str) – unique id of the run

• comm – communicater in ChainerMN

• cp_interval (int) – minimum number of checkpoints to preserve

• gc_interval (int) – interval to collect non-preserved checkpoints

28 Chapter 3. API Reference

Python Module Index

c
chainermn, 12

29

ChainerMN Documentation, Release 1.2.0

30 Python Module Index

Index

A
add_link() (chainermn.MultiNodeChainList method), 23
all_to_all() (in module chainermn.functions), 26
AllreducePersistent (class in chainermn.extensions), 27

C
chainermn (module), 1, 12, 18
create_communicator() (in module chainermn), 19
create_empty_dataset() (in module chainermn.datasets),

21
create_multi_node_checkpointer() (in module chain-

ermn), 27
create_multi_node_evaluator() (in module chainermn), 20
create_multi_node_optimizer() (in module chainermn),

20

E
environment variable

LD_LIBRARY_PATH, 9
MV2_SMP_USE_CMA, 9, 12
MV2_USE_CUDA, 9, 12
PATH, 9

L
LD_LIBRARY_PATH, 9

M
MultiNodeBatchNormalization (class in chain-

ermn.links), 23
MultiNodeChainList (class in chainermn), 21
MV2_SMP_USE_CMA, 9, 12
MV2_USE_CUDA, 9, 12

P
PATH, 9
pseudo_connect() (in module chainermn.functions), 25

R
recv() (in module chainermn.functions), 24

S
scatter_dataset() (in module chainermn), 20
send() (in module chainermn.functions), 24

31

	Installation
	Installation Guide
	Step-by-Step Troubleshooting

	Tutorial
	Overview
	Step 1: Communicators and Optimizers
	Step 2: Datasets and Evaluators
	Tips and FAQs

	API Reference
	Communicators
	Optimizers and Evaluators
	Dataset Utilities
	Links
	Functions
	Trainer extensions

	Python Module Index

